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Quantized Gravitational Field. II 
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A consistent formulation is given for the quantized gravitational field in interaction with integer spin 
fields. Lorentz transformation equivalence within a class of physically distinguished coordinate systems 
is verified. 

T 
INTRODUCTION They obey the equal-time commutation relations 

H E quantization problem posed by the gravita- _i[T0(x)}T°(xf)~] 

= - (qkl(x)Tl(x) + qk\x')Tl(x'))dkb{x-xf), tional field is not that of exhibiting canonical 
variables but rather consists in verifying that the __ .r- , . . ,.-, 
generators of coordinate transformations, which are *- k^ " ^ '-• 
only known implicitly, satisfy the necessary commuta- = "" *i {x)dkh{x—x ) — Tk(x )did(x—x ) . 

tion properties. A technique appropriate to this The generality of these relations can be inferred from 
problem has been devised/ in which canomcal operator t h e alternative example of a unit spin matter field. 
variables are combined with mathematical parameters 
of a functional-transformation group. We shall apply 
this method to construct a consistent formulation for 
the quantized gravitational field coupled to matter 
fields of spin 0 and 1. 

The following is a summary of results obtained by a 
heuristic application of the quantum action principle to 
the gravitational field and a spin 0 matter field.2 The 
operator reduces to 

SPIN-l MATTER FIELD 

We consider only an Abelian-gauge field. The action 
operator in a prescribed metric field gMV is 

W = / (dx 

W 

where 

• / 
{dx)l-hF»vH»v+lF»\-g)-^gVKF^-], 

O C l l b i d o ^ + ^ a * ] 
Hy,v = dpA „—dvA a 

action subject to the constraints 

and F^ is a tensor density. The constraint equations 
obtained by variation of AQ and Fkl are, respectively, 

d*F°* = 0 

where 
and 

rk = -Ulmdkq
ln+dk(2nlmqlm)-dl(2Ilkmq1'*) 

and 

The latter appears in the time gauge as3 

eim)ke(n)lHki= e{0)
()g-1^ex(m)eK(n)Fu, 

q*r°= l/(2K)qs(d^iq
kl+Q)-2KUklq

s(qklqmn-qkym)nmn, a n d t w o a l g ebraic consequences are given by 

in which 

Q= ~\qmndmqkldnqki-\dmqklqlndkq™n 

HklrYmqlnHmn^(-g)-1F^g^gVKF^+2^qklF
Ql 

^e(0fr
ll2Hki(F

kl-2eo^e(0)
kF>1). 

The resulting canomcal variable form of the action 
We have also included in the definition of r° an arbitrary operator is 
power of the quantity 

q= dttqki, W= J (dx)l~-F^dQAk~eo^ei0)
kTk-eo^r1/2T02 , 

in order to suggest, in a potentially constructive way, where 
the ambiguity thus far implicit in the discussion. The 
corresponding operators of the spinless-matter field are 

r ° = K(<t>°)2+dj4qkldri+qll2in2<t>2']. 

* Permanent address: Harvard University, Cambridge, 
Massachusetts. 

1 J. Schwinger, Nuovo Cimento (to be published). 
2 J. Schwinger, Phys. Rev. 130, 1253 (1963). 

Tk=HklF», 

With the aid of the canonical commutation relations, 
effectively given by 

-i[Hkl{x), F ° - (* ' ) ]= ( 6 ^ d z - S z - c \ ) S ( x - x ' ) , 

3 Notation: ( -g ) = -det£M„ g = detg*i, and (-g)-m = e{0fg
m. 
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one verifies that Tk and T° obey the previously stated 
commutation properties. 

EXTENDED OPERATORS 

The significance of qkl and 11^ is obtained by writing 

qkl = qklT+Hdkqi+diqk) — faidmqm+dkdiq 

and, similarly, 

Uu^n^+iidklll+dtU^-dndrnllrn+dkdiU. 

One also recasts the constraint equations in the forms 

dkdlq
kl^{ViYq^-2KB\ 

with the aid of the definitions 

Tk=fa—2(diHki—dklLu), 

r^P+l/(2K)dkdiq
kl, 

and 
dk=h+Tk, ff>=fl+T°. 

As a result we have, to within an additive total dif­
ferential, 

f (dx)nkldqk>= f (dx)£llklTdqklT 

+dkd(-iqk)-d°d(-2Kll)~], 

which is the sum of a generator of operator variations and 
the generator of an infinitesimal transformation param­
eterized by 

- k * = & , -2Kll=e-

This description is conveyed by the operator commuta­
tion relation 

- C 3 * z r W , n „ „ r ( a / ) ] = ( « w n
w f i ( x - x / ) ) 2 , 

and the differential-state-vector equation 

«8<f|=*(flJ(&)(W&-W«0)-

Equivalent versions of the latter are 

and 
C-*(«/%(*))-fc(*)]<€|=0, 

ti(5/5e(x))-e»(x)JZ\=0. 

In the last form a representation of the field operators 
by means of eigenvalues and functional differential 
operators is understood. 

We can now interpret qkl and Uki as extended 
operators by introducing the functional differential 

: H W I N G E R 

operator constructions of Uk and q, 

q=(-2K)£>2i8/d£0-%x2. 

These are written in a symbolic notation with the aid of 
the functions defined (apart from boundary conditions) 
by 

~V 2 £) i (x -x ' ) = 3 ( x - x ' ) , 

-V2£>2(x-x ' ) = ^ ( x - x ' ) . 
Thus, 

and 

+f»*d,a>2d*5/««-l/(2«)d*d«£°. 

As one can verify, with the aid of the explicit con­
struction, 

( 5 m n ^ ( x - x ' ) ) r 

+UBnl^k^m+^n
k^l^m+^J^k^n+^J^l^n)^1(x-X,) 

-Wldrndn+8mndkdl)£>l{x--Xf) 

+%dkdidmdnS>2(x—x'), 

these extended operators obey the simple canonical 
commutation relation 

-Cg*' (x),nmn(x')l==8mn
ki5(x-x'). 

CONSISTENCY 

The fundamental problem in formulating, the theory 
has now resolved itself into verifying, or imposing 
consistency on the four functional differential equations 
that govern the states {£ |, 

(Tk(x)+Tk(x))(Z\=0 

Let us consider first the extended operator 

Gx= I\dx)(rk+Tk)dxk 

and observe that it generates the transformation 
accompanying the arbitrary infinitesimal spatial co­
ordinate transformation dxk. Thus 

-i[qk\G^-bxmdmqkl+qmldmbxk 

+qkmdm8xl—2qkldm8xm, 

- C n * i A ] = -^dnJiu-iimidjcdx™ 
-Ukmdkdxm+Ukidm6xm, 

and, for the example of the spin-0 matter field, 

—i\jt>,Gx2=— dxmdm(j) 

- C * ° A ] = -hxmdm<jP-4Pdmbxm: 
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These are infinitesimal transformation laws of the 
various three-dimensional tensor densities. (We speak 
of a tensor density of degree b if the object is obtained 
from the corresponding tensor by multiplication with 
(gm)8). Indeed, qkl and 11^ are tensor densities of degree 
+ 2 and — 1, respectively, while <j> and <£° are scalar 
densities of degree 0 and + 1 , respectively. The com­
mutation properties of the set of operators Gx corre­
sponds to the composition law of successive infinitesimal 
transformations for the group of general coordinate 
transformations. Two successive infinitesimal coor-
inate transformations, performed in alternative order, 
are connected by another infinitesimal transformation, 

d^xk=d^xldi8^xk-d^xldid<2)xk, 

and correspondingly 

-C^.(1)A(2)]=^x[12]. 
The implied commutation relations are 

-il(n+Tk)(x), ( r r W ( * ' ) ] 
= - (n+Ti)(x)dk8(x-xf)- (Tk+Tk)(x')dl5(x-x'), 

which can also be derived from the transformation 
properties of rk+Tk, a vector density of degree + 1 , 

-;[>*+2T*, G J = -8x™dm(Tk+Tk) 

- (Tm+Tm)dk8xm- (rk+Tk)dm8xm. 

I t will be noted that the commutation relations are 
obeyed separately by rk and Tk. The group structure of 
these commutators confirms the consistency of the 
three functional differential equations, 

' ( T * + Z * ) < £ | = 0 . 

The various contributions to r°+T° are, individually, 
scalar densities of degree + 2 . (It should be recalled 
that dkdiqkl+Q = g(z)R.) The corresponding commuta­
tion relation, 

-;[(ro+r>)(x), (rk+Tk)(x')-] 
= - ( ( r ° + P ) ( * ) + (T°+T»)(x'))dk8(x-xf), 

shows the consistency between the functional differen­
tial equation 

( T ° + P ) < £ | = 0 

and the set of three referring to spatial coordinate 
transformations. 

All this reflects the automatic way in which three-
dimensional covariance is assured by the formalism. 
The essential problem is contained in the commutation 
properties of the operator set (T°+T°)(X). Let us note 
first that T°(x), for both examples of integer spin fields, 
involves ^l(x) without spatial derivatives. The con­
tributions to [r 0 (#) , r°(# ' ) ] w u l then come entirely 
from the terms in r°(x) involving Uki(x), and thus are 
proportional to 8(x—x'). Such a result is symmetrical 
between x and xf, and 

[^(o;),r-(^)]+cr>(x),^(^)]=o. 

Hence, 

[(rH-F>)(tf), ( T A + P X * ' ) ] 

= ti*(x),7°W)l+lT°(x),F&)l, 

and the necessity of a resulting group structure demands 
that the r° commutators have the same form as those 
of T° in relation to rk and Tk> respectively. 

I t is more convenient to consider qsr0. We first 
note that 

Lqsr°(x),q^(x/)']=[.qs(dkdlq^+Q) (x)} 

ttkiqs(qknqlm-qklqmn)nmn(%')l-- (*<-»*'), 

where the last term indicates the interchange of x and 
x' in the preceding commutator. The result is a linear 
function of the 11^ symmetrically multiplying a function 
of the qkl, and it is not difficult to verify that 

~-i[qsT0(x))q
sT°(x')'] 

= -(q**qkl(x) . TK*) + < 7 2 W ) . TZ(*')>M(X-X') 

in which the dot appears to indicate the symmetrization 
of multiplication. Symmetrization is also applied to the 
extended operator expression for rh but this is not 
significant if it is agreed that 

-i[.dpq
kl(x)iIlmn(x)2= Hm 8mn

kldp8(x-x')^0, 

as will be the result of any symmetrical approach to the 
limit. I t must also be remarked that there are various 
equivalent ways of writing the coefficient of V5(x—x'), 
since 

(f(x)g(xf)+f(x')g(x))V8(x-x') 

= (/WgW+/(^)g(^))V6(x-xO. 
Thus, 

-i[q8T°(x)}q
sT°(xf)'] 

= -(q*°qkl{x) . Tltf)+ftft(a/) . n(x))dk8(x-xf). 

The qs factors can also be included in the T° commuta­
tion relation and the result will indeed have the anal­
ogous form. There is one basic difference, however. 
Although symmetrization with q2sqkl is trivial for Th 

it is not for n since the latter does not generally com­
mute with its factor. But the verification of consistency 
for the equation 

3 ' (7*+^) (* )<* |=0 , 

which is equivalent to 

(7*+r°)(*)<$|=o, 

demands that the commutator of two such extended 
operators yield the combination TI+TI on the right-
hand side only, in position to annihilate the state 
{£ | . Thus, all depends on the commutation relation 
between q2sqkl and ri. 
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The product q2sqkl is a tensor density of degree 8^+2, 

- i[q2sqkl,G J = - 8xmd m (q2sqkl)+q2sq™ld m8xk 

+q2sqkmdm8xl- (8s+2)q2sqkldm8xn 

J U L I A N S C H W I N G E R 

in which we have written 

- l / ( 2 / c ) ^ z ^ = © 0 - ~ e o 

which asserts that 

-itq2sqkl(x),Tm(x'n 
^-q2sqkl(x')dm8(x-x')+q2sqnl(x)8m

kdn8(x--x') 

+q2*qkn(x)8jdn8(x-x') 

-(8s+l)q2°qkl(x)dm8(x-x'). 

The commutator of interest is 

-ilq2sqkl{x)sl(x
f)~] 

= -q2sqkl(x')di5(x-x')- (Ss-3)q2^l(x)d^(x-xf). 

I t can now be seen that there is a unique value of s for 
which the right-hand side is an antisymmetrical 
function of x and x', and 

£q2*qki(x)Mx'n+tq28qkl(x')Mx)>0, 

namely, 
» 2 • 

With this choice, we have 

-i[_qV2 ( r°+ T°) 0 ) , q112(r°+ V>) (V)] 
= -(qtfKri+Ti) {x)+qqkl{rl+Tl)(x

,))dk8{x~xf) 

and all consistency tests are satisfied. 
The addition of an arbitrary numerical multiple of 

qll2 = g to 

ro-i/(2K)(^^^+0~2^1/2n&^H^zgmn-^wgZn)nmn 
will not alter this conclusion. This is also true of the 
additive term qll4qklUki, in any multiplication order. 
But if one uses the particular combination 

Uql/iqkl^i+q~ll2Ilklq^qkl) 

that term can be removed completely from r°, without 
affecting rk, by the canonical transformation 

Jhi(x) -> expf" -A f (dx)g^\lki(x) e x p | & f ( W | 

= Ukl(x)+i\q^qki(x). 

LORENTZ INVARIANCE 

The coordinate conditions £*= x* (£k = £*, £° = — £o) 
define a physically distinguished class of Lorentz 
transformation equivalent coordinate systems. The 
explicit verification of Lorentz invariance, in its 
four-dimensional aspects, concerns volume integrated 
properties of the energy density equal-time commutator. 
The energy and momentum density operators #"(#) 
are to be obtained through the reduction of the extended 
operators 6fi(x) by means of the four functional differen­
tial equations 

(©*(*)-0*(s))<*|=O, 

di2(Uki~dklUmm) = &k=@k. 

We first note the equal-time commutator equation 

[(0«-^)W,(eo-^)Mlho, 
where 

- C © 0 W , ^ ( « / ) ] = - 2 ^ ( « , ) a * ^ J f i ( x - x , ) 

and 

2wkl= (qkmqln~-qklqmn)Umn 

+ q-1/2nmnqV2(qkmqln-qklqmn). 

Accordingly, we have 

{-ileQ(x),e°(xf)']+2(dnrkl(x) 

+d/Tkl(x'))dkd(x-xf)}(Z\=0. 

I t should also be observed that 

where 

+ q-limmnq
ll2(qkmqln~qhlqmn) 

— 2{5km5in—5ki8mn)Ilmn7 

and a further rearrangement of the commutator equa­
tion yields 

{-it#0(x),&0(x^+(dk(x)+#k(x0)dk8(x--x') 

-C(^-#>)(*), ev)]+C(0o-#o)(<), ©°(*)] 
+ (difkl(x)+d/fl(x'))dk8(x-x')}(Z\ =0. 

Extended operators have spatially-localized com­
mutation properties. But the reduction of extended 
operators is a nonlocal process, and, consequently, the 
individual commutators in the preceding equation will 
not vanish for finite |x—x' | . This effectively denies 
physical significance to the detailed specification of 
energy distributions by means of the operator &°(x). 
The situation differs with regard to integral aspects, 
however, since 

and 

(dx)&>=-l/(2K)[ da&qk* 
J s 

J (dx)xk@°=~l/(2K) f da^d^-qU) 
Jv J s 

refer to extended operators localized on the boundary 
surface. I t is reasonable to presume that the nonlocal 
commutators connecting surface and internal points of 
a region tend to zero asymptotically, with increasing 
volume. The resulting integral commutators will 
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involve the combinations 

J s 

asymptotic behavior of the fields, 

n; kr 

and 

• l/(Sir)Pmt8lmdk [ x {-i+hJdi | x | - 1 

-%8kidm\x\~1-ldkdidm\x\']. 

(dx)lxk(^+dmfml)-xl(^k+dmfmk)2 

= J"'+ 

The outcome of these considerations is the commuta­
tion properties 

f dam(xkfml-xlfmk). -i[/°*,/oi]= -Jkl, 
Js . 

which completes the formal verification of Lorentz 
The asymptotic vanishing of these surface integrals is invariance. But a much more careful examination will 
in the nature of a boundary condition characterizing a be required to test whether the loosely stated physical 
physically closed system. This property can be verified, boundary conditions can be maintained as assertions 
if one retains only the slowly decreasing terms in the about operators in relation to a class of physical states. 
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Dissipative Potentials and the Motion of a Classical Charge. II 

BORIS LEAF 

Physics Department, Kansas State University, Manhattan, Kansas 
(Received 13 March 1963; revised manuscript received 24 May 1963) 

In an earlier paper by the author, examples of the motion of a point charge were found to be consistent 
with the hypothesis of Abraham that the mass of an electron (or positron) is entirely electromagnetic. 
Further consequences of this hypothesis are developed. It is shown that the conservation laws of the electro­
magnetic field and Maxwell's equations require that the total Lorentz force (including the self-force) on 
the charge should vanish. This result can be expressed as a Lagrangian equation of motion. The canonical 
four momentum of the charge is the product of the magnitude of the charge by the four potential of the 
field at the position of the charge. When the dissipative form of the potential for an unconfined point charge 
is used, the integro-differential equation of motion of the earlier paper is obtained for a particle with zero 
"bare" mass. A mechanical momentum and mass are defined; these are associated with the singular part 
of the Green's function for the D'Alembert equation. The rate of change of this mechanical momentum is 
equal to the sum of the external force, the radiation damping force (with the correct sign obtained by the 
use of the retarded fields), and the gradient at the position of the charge of its Coulombic self-potential 
energy. For a particle assumed to follow a continuous trajectory, the integrals in the integro-differential 
equation of motion are evaluated by a procedure in agreement with, but much simpler than, that of Dirac. 
The result is the unrenormalized equation of Dirac for a particle whose mass is the divergent Coulombic 
self-energy. The effective momentum and mass in this equation are reduced to half of the mechanical 
momentum and mass by the force term arising from the gradient of the Coulombic self-potential energy. 

INTRODUCTION 

IN a previous paper, I1, an integro-differential equa­
tion for the motion of a point charge was described 

and applied to the examples of motion of a free particle 
and of a nonrelativistic simple harmonic oscillator. The 
equation was obtained by assuming the validity of the 
Lorentz force equation in addition to Maxwell's field 
equations. The force on the charge at the field point 
was taken to be the Lorentz force produced by the 
fields of a source charge in the limit where the field 
charge is identified with the source. It was pointed out 
that the motion of the charge in the examples considered 
was consistent with the Abraham hypothesis that the 

1 B. Leaf, Phys. Rev. 127, 1369 (1962). Referred to as I in this 
paper. 

mass of the electron (or positron) is wholly electro­
magnetic. In the present paper further consequences 
of this hypothesis are developed. It is shown in Sec. 1 
that the conservation laws of the electromagnetic field 
and Maxwell's equations require that the total Lorentz 
force (including the self-force) on a point charge vanish. 
In Sec. 2, it is shown that this result can be derived from 
a Lagrangian function, similar to the usual Lagrangian 
for a particle in an electromagnetic field, but with the 
bare mass suppressed. The canonical momentum of the 
charge obtained from this Lagrangian is pa^eA0{z) 
where Aa is the four potential of the field at the position 
z of the charge e. When the dissipative form (3.1) of 
the potential for an unconfined point charge, plus the 
potential of the external fields, is used for Aff, theintegro-


